

HEURISTIC SEQUENTIAL CLASSIFIERS BASED ON MULTILAYER

PERCEPTRON AND PROBABILISTIC NEURAL NETWORK

TOMASZ WALOKWIAK
Institute of Engineering Cybernetics
Wroclaw University of Technology

ul. Janiszewskiego 11/17,
50-372 Wroclaw, Poland

e-mail: twalkow@ict.pwr.wroc.pl

WOJCIECH ZAMOJSKI
Institute of Engineering Cybernetics
Wroclaw University of Technology

ul. Janiszewskiego 11/17
50-372 Wroclaw, Poland

e-mail: zamojski@ict.pwr.wroc.pl

ABSTRACT
This paper presents a method of sequential

classification. We assumed that we have a classifier
which gives classification results for a single feature
vector. We are analyzing five different algorithms of
integrating these single classification outputs to give a
final classification decision after a given sequence of
feature vectors. As a base classification rule (for single
feature vector) we used the multilayer perceptron and
the probability neural network (PNN). The performance
of the proposed integration of sequences of
classification outputs from neural network classifiers
was tested in an automatic, text independent, speaker
identification task. Achieved results are presented..

Keywords: sequential classification, multilayer
perceptron, Probabilistic Neural Network, speaker
recognition

1 INTRODUCTION
In this paper, we would like to focus on the problem

of object recognition [1] based on some signals
incoming in time. The real examples of such problem
are speaker recognition, recognition of vehicles based
on acoustic signals or recognition of vehicles based on
seismic signals. Assume, that we have a signal
generated by the object, which could be interpreted as a
change of some physical parameter in time (i.e. pressure
of air or ground vibrations). The aim is to classify the
signal to a given group, which represents the object
generating the signal. One solution of such problem
could be so called long period recognition, which is
based on estimating some parameters for long periods
of signal. However, we want to focuses on the other
approach. Assume that we have a method, which
extracts some parameters from short parts of signal. For
each parameter vector, representing a short part of
signal, we could have a classifier (in this case we will
focus on neural networks [1,2]), which generates
classification answers. However, it is worth to
investigate the classification results for longer parts of
signals. Therefore, a method for sequential integration
of classification results will be required. It could be

assumed, that integration of several classification results
for following parameter vectors would give much better
results than results based on one parameter vector.

In this paper we present a set of heuristic sequential
classifiers which allows solving described above
problem. The framework of the classification problem
with predefined classes is as follows. Certain objects are
to be classified as coming from one of a fixed number
of classes. Each object gives rise to certain
measurements forming a feature vector. This is an input
for a classification rule. We investigate, in chapter 2,
two kinds of classifiers probabilistic neural networks
[3,4] and classical multilayer perceptron [1,2]. Answers
from these neural network classifiers for following
feature vectors are integrated by a sequential
classification rules (chapter 3) giving the final
classification answer. Performance of proposed
algorithms is tested in an automatic, text independent,
speaker recognition task. The speaker recognition
system uses an auditory based pre-processing described
in chapter 4. The achieved results for speaker
identification are presented in chapter 5.

2 NEURAL NETWORK CLASSIFIERS

2.1 MULTILAYER PERCEPTRON
One of the most popular neural networks is a

multilayer perceptron (MLP). It is a very useful tool in
approximation and recognition problems [1,2]. The
topology of this net is a structured hierarchical layered
network (Fig. 1). It consists of several distinct layers of
nodes including an input layer and an output layer.
Connections within a layer or from higher to lower
layers are not permitted. Each node in a layer is
connected to all the nodes in the layer above it. The
algorithms for multilayer perceptron processing can be
divided into two phases: learning and working (giving
answers for specified stimulates). The output of each
neuron is calculated based on the outputs of all neurons
connected with that one and the weights on those
connections. A rule that defines the output of each
neuron is called the update rule. There are a variety of
different kinds of model update rules, such as sigmoid
or tangent hyperbolic.

Training is equivalent to finding proper weights for
all the connections such that a desired output is
generated for a corresponding input. Multilayer
perceptrons are used because there is known learning
algorithm for them named as Back Propagation
Algorithm [2]. The idea of this algorithm is learning
proper weights by computing the discrepancy between
the desired and actual outputs and feeding back this
error signal level-by-level to the inputs, changing the
connection weights in such a way as a modify them in
proportion to their responsibility for the output error.
There exist a large number of different representations
of the error measure as a function of connection weights
(w). The most common function is given by a sum of
the square of the difference between desired (id) and
actual (io) output over all output units (index i) and all
examples (index j):

2
)(

2
1)(∑∑ −=

j

j
i

i

j
i odE w .

We used a two-layer perceptron for classification of
features vectors. Number of neurones in input layer
depends on the pre-processing algorithm. The number
of inputs equals to the length of the feature vector. The
net has as many output neurons as many classes should
recognize. It is expected to light only one proper output
neuron (answer is in code 1-of-n). It means that
classifier recognizes class k when k-th neuron is the
most active.

For training the Levenberg-Marquardt method has
been chosen [2].

Output layer

Input layer

Hidden layers

Outputs

Inputs
Fig. 1. Neural network for classification of feature

vectors

2.2 PROBABILISTIC NEURAL
NETWORKS

Assume that we have some objects from one of
1,...,K classes described by a feature vector x. The
process of classification could be understood as taking

one of K possible decisions. Assuming that a probability
density function for each class is given (denote it by fi
(x)) optimal (minimum-error-rate) Bayes theory
(described in many standard textbooks, for example [2])
could be used for classification. If there is no cost
associated with being correct, all the prior probabilities
(probabilities that an example is drawn from a given
class) are equal, the optimal Bayes decision rule is
choosing a class with largest values of probability
density function. Therefore the Bayes rule is given by:

⎩
⎨
⎧ ==)(max)(if class tobelongs k xxx j

j
ffk .

Having some estimator of probability density
function for each class the optimal Bayes decision rule
could be a bases for a probabilistic neural network
(PNN) presented in Fig. 2.

The density estimator for each class is independent
from the other classes. Therefore, from this point we
will be talking only about the density for one class.

Assume, that an unknown density could be
represented as a linear combination of component
densities F(x,θi) (whereas θi is a parameter vector):

∑
=

=
N

i
ii Faf

1
),()(θxx ,

where ai presents the prior probability of the data
having been generated from component i of the mixture.
These priors must sum to 1.

The component densities (kernels) F(x,θi) could be
selected from any density function. However, we limit
our attention to the Gaussian distribution function.

 ...

 ... input layer

 ...

 f1(x) f2(x) fK(x)

 class 1 class 2 ... class K

decision layer

estimation of
probability

density
function

estimation of
probability

density
function

estimation of
probability

density
function

xd x1

Fig. 2. Probabilistic neural network (PNN)

 ...

a1 aN
a2

Fig.3. The RBF network for density estimation

Moreover, the covariance matrix of Gaussian
function will be limited to a diagonal matrix (a matrix
having a non-zero values only on its diagonal) so that
Σ=diag(s1, s2,..., sd) and hence:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−

==

∑
∏ =

=

d

j
j

i

j
i

j

d

j

j
i

d

iii

s

mx

s

FF

1

2

1

2/
5.0exp

)2(

1

),,(),(

π

θ smxx

.

Based on above equations a feed-forward RBF
neural network (RBFNN) presented in Fig. 3 could be
defined. The number of neurons in the input layer is set
equal to a dimension of the feature vector (denoted here
as d). Each neuron from input layer is connected with
each of N neurons in the hidden layer. With each hidden
neuron a centre vector mi and a width vector si is
associated. The activation of the each hidden neuron is
defined by the above equation. All hidden neurons
activation are multiplied by weights ai and summed
giving an output from the network.

The PNN network in Fig. 2 requires a separate
RBFNN for each class. The parameter values ai, mi, si
for each RBFNN are determinated separately based on
the training set for a given class. This is done using a
probability density estimation algorithm, described in
work [5], which lays in the framework of Expectation-
Maximisation (EM) algorithm [6].

3 SEQUENTIAL RECOGNITION
ALGORITHMS

As it was stated in the introduction, we want to
integrate a sequence of answers from classifiers to
make the final classification decision. At first, we will
introduce some notations. Let),...,,(21 NkCer xxx be a
value, we will called it certainty of class k for N
following features vectors Nxxx ,...,, 21 , which is a
base for the final sequential classification. We propose
to use a heuristic sequential classification rule, which
resembles the Bayes rule, i.e. select a class with highest
certainty:

),...,,(max),...,,(if
 class tobelongs ,...,,

21
..1

21

21

Nj
Kj

Nk

N

CerCer
k

xxxxxx
xxx

=
=

=
.

Certainty for class k is calculated based on answer of
the neural network output ()nkf x (value from of k-th
output neuron in case of MLP and the output of k-th
RBF network in case of PNN) for each feature vector

nx (n=1..N) and the classification result for class k , i.e.:

⎪⎩

⎪
⎨
⎧ =

= =

 elsewhere 0

)(max)(if 1
)(..1

k nj
Kj

n
nk

ff
c

xx
x .

We propose five algorithms for calculation of the
certainty of class k for N following features vectors

Nxxx ,...,, 21 :

Algorithm 1. Summing of classifier outputs:

∑
=

=
N

n
nkNk cCer

1
21)(),...,,(xxxx .

Algorithm 2. Summing of neurons outputs:

∑
=

=
N

n
nkNk fCer

1
21)(),...,,(xxxx .

Algorithm 3. Multiplying of neurons outputs:

∏
=

=
N

n
nkNk fCer

1
21)(),...,,(xxxx .

In case of PNN, this is justify by the probabilistic
rule, stating that the cumulative probability density is
equal for the multiplication of each probability density
function in case when the following feature vectors nx
are probabilistic independent. It is worth to mention
that this assumption is not always true in case of
sequential classification. This algorithm was proposed
by us in [4].

Next, two algorithms, proposed in [7], combines the
classifier outputs of N previous feature vectors,
understood as long history of classification, with M
(where 0<M<N) last outputs, say short history. It could
be useful for detection of class changes for on-line
classification, when at given moment a object
generating signals changes to another. They are
recurrent algorithms and could be calculated only for
N>M, for N<=M, certainty for each class is equal to 0
for algorithm 4 and 1 for algorithm 5, and is impossible
to undertake final classification decision.
Algorithm 4. Certainty modified by short-time history:

∑∑
=+−=

⋅

+=
N

n
nk

N

MNi
ni

NkNk

xcxc
M

xxCerxxxCer

11

221

)()(1
),...,(),...,,(

.

Algorithm 5 Weighted certainty modified by short-time
history:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+

=

∑

∑∑

=

=+−=

N

n
nk

N

n
nk

N

MNi
niNk

Nk

xc
N

xcxc
M

xxCer

xxxCer

1

11
2

21

)(15.0

)()(1),...,(

),...,,(

Hamming
window

FFT

Power

spectrum

Critical band

filters
(bark spaced)

Cosine

transform

speech
signal

feature
vectors
 x

Equal loudness

curve

 log

Fig. 4. Auditory based pre-processing

4 SPEAKER RECOGNITION TASK

The presented in previous chapter methods of
integration sequences of neural network classification
outputs have been applied to a speaker recognition
task. We have use special way of pre-selecting input
data. Only selected parts of speech signal, we call it
speech events, are used for further processing. Speech
was digitized at 20 kHz on 16 bits and presented to the
system. A short-time energy function is calculated using
40 msec frames with 10 mces steps in an overlapping
mode. Next the energy function is smoothed using a 7-
point Hanning window. From this smoothed energy
function the peaks are located. The peaks with energy
value below some threshold are rejected, regarded as
noise. Remained peaks are treated as speech events and
only 23 msec of signal around such event is further used
by pre-processing. In performed experiments
approximately 6 speech events occurred in 1 second of
speech.

Moreover, experiments showed that around 95% of
speech events lay in the middle of vowels. It allows to
achieve an independent sequence of feature vectors
[3,4]. Next, each of selected speech event was pre-
processed to achieve feature vectors which are inputs
for neural network classifiers. The pre-processing was
developed on the basis of empirical studies of the
human ear. In the computational model, the goal is to
convert the short-time spectra from a conventional form
to a so-called perceptual domain, with the resultant
spectra referred to as auditory spectra. A number of
facts originating from psychological experiments lay on
the basis of perceptually processing, including: critical
band, masking and equal-loudness. The computational
model of this method is shown in a block diagram of
Fig. 4. First, speech signal is converted into the power
spectrum. Next, the signal is filtered throughout a bank
of filters (in the performed experiments a number of 32

filters were used), which are equally spaced in the Bark
domain [8]. Next, the filter outputs are multiplied by the
equal loudness function approximated from date given
in [9] and achieved signal is converted into logarithm
spectrum. Finally, the logarithm perceptually spectrum
is cosine transformed to produce the cepstral
coefficients. In performed experiments a number of 14
cepstral coefficients are used in the feature vector.

5 EXPERIMENT AND RESULTS
The proposed in chapter 3 algorithms have been

tested on a closed set, text independent, speaker
identification task. The population of speakers consists
of 15 persons. Each person produced a set of three 10s
utterance of text. Text consisted of freely spoken
sentences in Polish language. This set has been used for
training each neural network. In case of the multilayer
perceptron we have used 17 hidden neurons (selected
by experiments) with sigmoid update rule. And in case
of PNN, each RBF network consists of 8 neurons in the
hidden layer. Next, after three months, the same
speakers produced next set, consisting of three 10s
utterance of text. This text was uncorrelated with the
text used for training and was used for testing.
Achieved results, i.e. percent of correct recognition, for
each certainty calculation algorithm for multilayer
perceptron is presented in Table 1, and for PNN in
Table 2. Length of short-time history (M) in algorithms
4 and 5 was set to 3.

Table 1. Percentage of correct classification for
multilayer perceptron

Number of speech events (feature vectors) Algori-
thm 2 3 4 5 6

1 61.0% 73.1% 80.7% 94.6% 87.9%
2 74.1% 82.4% 87.1% 90.8% 92.3%
3 70.2% 75.4% 76.5% 76.6% 76.4%
4 - 73.2% 80.7% 82.6% 83.7%
5 - 73.2% 80.7% 82.6% 84.2%

Number of speech events (feature vectors)
 7 8 9 10 11

1 90.2% 92.8% 93.6% 94.5% 95.7%
2 94.6% 95.7% 96.7% 97.7% 98.1%
3 75.0% 74.3% 73.7% 71.7% 70.1%
4 84.7% 85.0% 85.6% 86.3% 86.8%
5 86.1% 87.2% 88.1% 89.0% 90.2%

Table 2. Percentage of correct classification for PNN

Number of speech events (feature vectors) Algori-
thm 2 3 4 5 6

1 62.4% 72.5% 79.6% 84.5% 87.6%
2 66.9% 70.4% 72.2% 73.1% 74.2%
3 75.0% 82.9% 87.3% 90.0% 92.0%
4 - 72.8% 80.0% 82.3% 83.6%

5 - 72.8% 80.0% 82.3% 84.0%
Number of speech events (feature vectors)

 7 8 9 10 11
1 89.8% 92.3% 93.7% 94.7% 95.6%
2 74.5% 74.9% 75.6% 76.0% 76.5%
3 94.1% 95.4% 96.2% 97.3% 98.5%
4 84.1% 84.8% 85.4% 86.2% 86.7%
5 85.1% 86.7% 87.9% 88.6% 89.4%

6 CONCLUSION AND FURTHER
WORK

The achieved results are quite good. As expected,
taking into consideration larger number of speech
events (longer text) gives lower recognition error. The
system for 11 speech event, approximately 2 s of text,
gives for the best of proposed algorithm 98.5% of
correct recognition. It’s hard to say which algorithm is
better in general, tests on different tasks would be very
helpful with proposed algorithm analysis. However, the
achieved results suggest that summing of multilayer
perceptron neuron outputs and multiplication of RBF
network outputs in case of PNN classifier are the best
methods.

Further work will include the test of presented
methods on other data set, i.e. recognition of vehicles
based on acoustic signals [10]. In case of presented
speaker recognition task, the method of speech event
selection, which in most cases were vowels, allows us
to assume the probabilistic independence of following
vowels. However, in the planned task, i.e. in recognition
of vehicles, it is not hold. Therefore, the proposed
method requires some investigations to allow
recognitions in cases when the assumption of
probabilistic independence of following vectors is not
true. Also some theoretical work on sequential classifier
presented here would be needed to justify the achieved
results.

REFERENCES
[1] B. D. Ripley, Pattern Recognition and Neural

Networks. Cambridge University Press, 1996.
[2] Ch. M. Bishop, Neural Networks for Pattern

Recognition, Clarendon Press, Oxford, 1995.
[3] T. Walkowiak T, Probabilistic Neural Network for

Open Set Classification, IV National Conference
Neural Networks and their Application, Zakopane,
Poland, pp. 232-237, 1999.

[4] T. Walkowiak T, Sequential recognition in neural
networks – a speaker recognition case study, 6th
International Conference on Soft Computing,
Mendel’2000, Brno, Czech Republic, pp. 385-390,
2000.

[5] T. Walkowiak, RBF neural networks for density
estimation, XIX KKTOiUE, Krakow-Krynica,
Poland, pp.657-662, vol. 2, 1996.

[6] A. P. Dempster, N. M. Laird, D. B. Rubin,
Maximum likelihood from incomplete data via the
EM algorithm. Journal of Royal Statistical Society,
vol B 39 , pp. 1-38, 1977.

[7] J. Zagorny, Analysis of sequential recognition
methods (in Polish), MSc thesis, Institute of
Engineering Cybernetics, Wroclaw University of
Technology, Wroclaw, Poland, 2001.

[8] R. Schroeder, Recognition of Complex Acoustic
Signals, Life Science Research Report 5, edited by
T. H. Bullock, Abakon Verlag, Berlin, pp. 307-
352, 1977.

[9] D. Robinson, R. Dadson, A predetermination of
the equal-loudness relations for pure tones, British
Journal of Applied Physics, vol. 7, pp. 166-181,
1956.

[10] T. Walkowiak, Neural networks for vehicle
recognition based on acoustic signals. First
International Conference on Soft Computing
Applied in Computer and Economic Environments
ICSC'2003, Kunovice, Czech Republic, pp. 129-
139, 2003.

