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ABSTRACT 
This paper presents a method of sequential 

classification. We assumed that we have a classifier 
which gives classification results for a single feature 
vector. We are analyzing five different algorithms of 
integrating these single classification outputs to give a 
final classification decision after a given sequence of 
feature vectors. As a base classification rule (for single 
feature vector) we used the multilayer perceptron and 
the probability neural network (PNN). The performance 
of the proposed integration of sequences of 
classification outputs from neural network classifiers  
was  tested in an automatic, text independent, speaker 
identification task. Achieved results are presented.. 
 
Keywords: sequential classification, multilayer 
perceptron, Probabilistic Neural Network, speaker 
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1 INTRODUCTION 
In this paper, we would like to focus on the problem 

of object recognition [1] based on some signals 
incoming in time. The real examples of such problem 
are speaker recognition, recognition of vehicles based 
on acoustic signals or recognition of vehicles based on 
seismic signals. Assume, that we have a signal 
generated by the object, which could be interpreted as a 
change of some physical parameter in time (i.e. pressure 
of air or ground vibrations). The aim is to classify the 
signal to a given group, which represents the object 
generating the signal. One solution of such problem 
could be so called long period recognition, which is 
based on estimating some parameters for long periods 
of signal. However, we want to focuses on the other 
approach.  Assume that we have a method, which 
extracts some parameters from short parts of signal. For 
each parameter vector, representing a short part of 
signal, we could have a classifier (in this case we will 
focus on neural networks [1,2]), which generates 
classification answers. However, it is worth to 
investigate the classification results for longer parts of 
signals. Therefore, a method for sequential integration 
of classification results will be required.  It could be 

assumed, that integration of several classification results 
for following parameter vectors would give much better 
results than results based on one parameter vector.  

In this paper we present  a set of heuristic sequential 
classifiers which allows solving described above 
problem. The framework of the classification problem 
with predefined classes is as follows. Certain objects are 
to be classified as coming from one of a fixed number 
of classes. Each object gives rise to certain 
measurements forming a feature vector. This is an input 
for a classification rule. We investigate, in chapter 2, 
two kinds of classifiers probabilistic neural networks 
[3,4] and classical multilayer perceptron [1,2]. Answers 
from these neural network classifiers for following 
feature vectors are integrated by a sequential 
classification rules (chapter 3) giving the final 
classification answer. Performance of proposed 
algorithms is tested in an automatic, text independent, 
speaker recognition task. The speaker recognition 
system uses an auditory based pre-processing described 
in chapter 4. The achieved results for speaker 
identification are presented in chapter 5. 

2 NEURAL NETWORK CLASSIFIERS 

2.1 MULTILAYER PERCEPTRON  
One of the most popular neural networks is a 

multilayer perceptron (MLP). It is a very useful tool in 
approximation and recognition problems [1,2]. The 
topology of this net is a structured hierarchical layered 
network (Fig. 1). It consists of several distinct layers of 
nodes including an input layer and an output layer. 
Connections within a layer or from higher to lower 
layers are not permitted. Each node in a layer is 
connected to all the nodes in the layer above it. The 
algorithms for multilayer perceptron processing can be 
divided into two phases: learning and working (giving 
answers for specified stimulates). The output of each 
neuron is calculated based on the outputs of all neurons 
connected with that one and the weights on those 
connections. A rule that defines the output of each 
neuron is called the update rule. There are a variety of 
different kinds of model update rules, such as sigmoid 
or tangent hyperbolic. 



 

Training is equivalent to finding proper weights for 
all the connections such that a desired output is 
generated for a corresponding input. Multilayer 
perceptrons are used because there is known learning 
algorithm for them named as Back Propagation 
Algorithm [2]. The idea of this algorithm is learning 
proper weights by computing the discrepancy between 
the desired and actual outputs and feeding back this 
error signal level-by-level to the inputs, changing the 
connection weights in such a way as a modify them in 
proportion to their responsibility for the output error. 
There exist a large number of different representations 
of the error measure as a function of connection weights 
(w). The most common function is given by a sum of 
the square of the difference between desired ( id ) and 
actual ( io ) output over all output units (index i) and all 
examples (index j): 
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We used a two-layer perceptron for classification of 
features vectors. Number of neurones in input layer 
depends on the pre-processing algorithm. The number 
of inputs equals to the length of the feature vector. The 
net has as many output neurons as many classes should 
recognize. It is expected to light only one proper output 
neuron (answer is in code 1-of-n). It means that 
classifier recognizes class k when k-th neuron is the 
most active.  

For training the Levenberg-Marquardt method has 
been chosen [2]. 

 

Output layer

Input layer
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Outputs

Inputs
Fig. 1. Neural network for classification of feature 

vectors 

2.2 PROBABILISTIC NEURAL 
NETWORKS 

Assume that we have some objects from one of 
1,...,K classes described by a feature vector x. The 
process of classification could be understood as taking 

one of K possible decisions. Assuming that a probability 
density function for each class is given (denote it by fi 
(x)) optimal (minimum-error-rate) Bayes theory 
(described in many standard textbooks, for example [2])  
could be used for classification. If there is no cost 
associated with being correct, all the prior probabilities 
(probabilities that an example is drawn from a given 
class) are equal, the optimal Bayes decision rule is 
choosing a class with largest values of probability 
density function. Therefore the Bayes rule is given by: 
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Having some estimator of probability density 
function for each class the optimal Bayes decision rule 
could be a bases for a probabilistic neural network 
(PNN) presented in Fig. 2. 

The density estimator for each class is independent 
from the other classes. Therefore, from this point we 
will be talking only about the density for one class. 

Assume, that an unknown density could be 
represented as a linear combination of component 
densities F(x,θi) (whereas θi  is a parameter vector): 
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where ai  presents the prior probability of the data 
having been generated from component i of the mixture. 
These priors must sum to 1. 

The component densities (kernels) F(x,θi ) could be 
selected from any density function. However, we limit 
our attention to the Gaussian distribution function. 
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Fig. 2. Probabilistic neural network (PNN) 
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Fig.3. The RBF network for density estimation 
 

Moreover, the covariance matrix of Gaussian 
function will be limited to a diagonal matrix (a matrix 
having a non-zero values only on its diagonal) so that 
Σ=diag(s1, s2,..., sd) and hence: 
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Based on above equations a feed-forward RBF 
neural network (RBFNN) presented in Fig. 3 could be 
defined. The number of neurons in the input layer is set 
equal to a dimension of the feature vector (denoted here 
as d). Each neuron from input layer is connected with 
each of N neurons in the hidden layer. With each hidden 
neuron a centre vector mi  and a width vector si  is 
associated. The activation of the each hidden neuron is 
defined by the above equation. All hidden neurons 
activation are multiplied by weights ai and summed 
giving an output from the network. 

The PNN network in Fig. 2 requires a separate 
RBFNN for each class. The parameter values ai, mi, si 
for each RBFNN are determinated separately based on 
the training set for a given class. This is done using a 
probability density estimation algorithm, described in 
work [5], which lays in the framework of Expectation-
Maximisation (EM) algorithm [6].  

3 SEQUENTIAL RECOGNITION 
ALGORITHMS 

As it was stated in the introduction, we want to 
integrate a sequence of  answers from classifiers to 
make the final classification decision. At first, we will 
introduce some notations. Let ),...,,( 21 NkCer xxx  be a 
value, we will called it certainty of class k for N 
following features vectors Nxxx ,...,, 21 , which is a 
base for the final sequential classification. We propose 
to use a heuristic sequential classification rule, which 
resembles the Bayes rule, i.e. select a class with highest 
certainty: 
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Certainty for class k is calculated based on answer of 
the neural network output ( )nkf x  (value from of k-th 
output neuron in case of MLP and the output of k-th 
RBF network in case of PNN) for each feature vector 

nx (n=1..N) and the classification result for class k , i.e.:  

⎪⎩

⎪
⎨
⎧ =

= =

                    elsewhere   0

)(max)( if   1
)( ..1

k nj
Kj

n
nk

ff
c

xx
x . 

We propose five algorithms for calculation of the 
certainty of class k for N following features vectors 

Nxxx ,...,, 21 :  

Algorithm 1. Summing of classifier outputs: 
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Algorithm 2. Summing of neurons outputs: 
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Algorithm 3. Multiplying of  neurons outputs: 
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In case of PNN, this is justify by the probabilistic 
rule, stating that the cumulative probability density is 
equal for the multiplication of each probability density 
function in case when  the following feature vectors nx  
are probabilistic independent.  It is worth to mention 
that this assumption is not always true in case of 
sequential classification. This algorithm was proposed 
by us in [4]. 

Next, two algorithms, proposed in [7], combines the 
classifier outputs of N previous feature vectors, 
understood as long history of classification, with M 
(where 0<M<N ) last outputs, say short history. It could 
be useful for detection of class changes for on-line 
classification, when at given moment a object 
generating signals changes to another. They are 
recurrent algorithms and could be calculated only for 
N>M, for N<=M, certainty for each class is equal to 0 
for algorithm 4 and 1 for algorithm 5, and is impossible 
to undertake final classification decision. 
Algorithm 4. Certainty modified by short-time history:  
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Algorithm 5 Weighted certainty modified by short-time 
history:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+

=

∑

∑∑

=

=+−=

N

n
nk

N

n
nk

N

MNi
niNk

Nk

xc
N

xcxc
M

xxCer

xxxCer

1

11
2

21

)(15.0

)()(1),...,(

),...,,(

 



 

 
 

Hamming 
window 

 
FFT 

 
Power 

spectrum 

 
Critical band 

filters 
(bark spaced) 

 
Cosine 

transform 

speech 
signal 

feature 
vectors 
     x 

 
Equal loudness 

curve 

  
          log 

 

Fig. 4. Auditory based pre-processing 

4 SPEAKER RECOGNITION TASK 

The presented in previous chapter methods of  
integration sequences of neural network classification 
outputs  have been applied to a speaker recognition 
task. We have use special way of pre-selecting input 
data. Only selected parts of speech signal, we call it 
speech events, are used for further processing. Speech 
was digitized at 20 kHz on 16 bits and presented to the 
system. A short-time energy function is calculated using 
40 msec frames with 10 mces steps in an overlapping 
mode. Next the energy function is smoothed using a 7-
point Hanning window. From this smoothed energy 
function the peaks are located. The peaks with energy 
value below some threshold are rejected, regarded as 
noise. Remained peaks are treated as speech events and 
only 23 msec of signal around such event is further used 
by pre-processing. In performed experiments 
approximately 6 speech events occurred in 1 second of 
speech.   

Moreover, experiments showed that around 95% of 
speech events lay in the middle of vowels.  It allows to 
achieve an independent sequence of feature vectors 
[3,4]. Next, each of selected speech event was pre-
processed to achieve feature vectors which are inputs 
for neural network classifiers. The pre-processing was 
developed on the basis of empirical studies of the 
human ear. In the computational model, the goal is to 
convert the short-time spectra from a conventional form 
to a so-called perceptual domain, with the resultant 
spectra referred to as auditory spectra. A number of 
facts originating from psychological experiments lay on 
the basis of perceptually processing, including: critical 
band, masking and equal-loudness. The computational 
model of this method is shown in a block diagram of 
Fig. 4. First, speech signal is converted into the power 
spectrum. Next, the signal is filtered throughout a bank 
of filters (in the performed experiments a number of 32 

filters were used), which are equally spaced in the Bark 
domain [8]. Next, the filter outputs are multiplied by the 
equal loudness function approximated from date given 
in [9] and achieved signal is converted into logarithm 
spectrum. Finally, the logarithm perceptually spectrum 
is cosine transformed to produce the cepstral 
coefficients. In performed experiments a number of 14 
cepstral coefficients are used in the feature vector. 

5 EXPERIMENT AND RESULTS 
The proposed in chapter 3 algorithms have been 

tested on a closed set, text independent, speaker 
identification task. The population of speakers consists 
of 15 persons. Each person produced a set of three 10s 
utterance of text. Text consisted of freely spoken 
sentences in Polish language. This set has been used for 
training each neural network. In case of the multilayer 
perceptron we have used 17 hidden neurons (selected 
by experiments) with sigmoid update rule. And in case 
of PNN, each RBF network consists of 8 neurons in the 
hidden layer. Next, after three months, the same 
speakers produced next set, consisting of three 10s 
utterance of text. This text was uncorrelated with the 
text used for training and was used for testing. 
Achieved results, i.e. percent of correct recognition, for 
each certainty calculation algorithm  for multilayer 
perceptron is presented in Table 1, and for PNN in 
Table 2. Length of short-time history (M) in algorithms 
4 and 5 was set to 3. 

Table 1. Percentage of correct classification for 
multilayer perceptron 

Number of speech events (feature vectors) Algori-
thm 2 3 4 5 6 

1 61.0% 73.1% 80.7% 94.6% 87.9% 
2 74.1% 82.4% 87.1% 90.8% 92.3% 
3 70.2% 75.4% 76.5% 76.6% 76.4% 
4 - 73.2% 80.7% 82.6% 83.7% 
5 - 73.2% 80.7% 82.6% 84.2% 

Number of speech events (feature vectors) 
 7 8 9 10 11 

1 90.2% 92.8% 93.6% 94.5% 95.7% 
2 94.6% 95.7% 96.7% 97.7% 98.1% 
3 75.0% 74.3% 73.7% 71.7% 70.1% 
4 84.7% 85.0% 85.6% 86.3% 86.8% 
5 86.1% 87.2% 88.1% 89.0% 90.2% 

Table 2. Percentage of correct classification for PNN 

Number of speech events (feature vectors) Algori-
thm 2 3 4 5 6 

1 62.4% 72.5% 79.6% 84.5% 87.6% 
2 66.9% 70.4% 72.2%  73.1% 74.2% 
3 75.0% 82.9% 87.3% 90.0% 92.0% 
4 - 72.8% 80.0% 82.3% 83.6% 



 

5 - 72.8% 80.0% 82.3% 84.0% 
Number of speech events (feature vectors) 

 7 8 9 10 11 
1 89.8% 92.3% 93.7% 94.7% 95.6% 
2 74.5% 74.9% 75.6% 76.0% 76.5% 
3 94.1% 95.4% 96.2% 97.3% 98.5% 
4 84.1% 84.8% 85.4% 86.2% 86.7% 
5 85.1% 86.7% 87.9% 88.6% 89.4% 

6 CONCLUSION AND FURTHER 
WORK 

The achieved results are quite good. As expected, 
taking into consideration larger number of speech 
events (longer text) gives lower recognition error. The 
system for 11 speech event, approximately 2 s of text, 
gives for the best of proposed algorithm 98.5% of 
correct recognition. It’s hard to say which algorithm is 
better in general, tests on different tasks would be very 
helpful with proposed algorithm analysis. However, the 
achieved results suggest  that summing of multilayer 
perceptron neuron outputs and multiplication of RBF 
network outputs in case of PNN classifier are the best 
methods. 

Further work will include the test of presented 
methods on other data set, i.e. recognition of vehicles 
based on acoustic signals [10]. In case of presented 
speaker recognition task, the method of speech event 
selection, which in most cases were vowels, allows us 
to assume the probabilistic independence of following 
vowels. However, in the planned task, i.e. in recognition 
of vehicles, it is not hold. Therefore, the proposed 
method requires some investigations to allow 
recognitions in cases when the assumption of 
probabilistic independence of following vectors is not 
true. Also some theoretical work on sequential classifier 
presented here would be needed  to justify the achieved 
results. 
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